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Beginning

In this talk we are mainly concerned with the extremal solutions of
the discrete-time algebraic Riccati equation (DARE)

X = AHXA− AHXFX + CHC , (1.1a)

or its equivalent expression

X = AHX (I + GX )−1A + H, (1.1b)

where FX := (R + BHXB)−1BHXA, A ∈ Cn×n, B ∈ Cn×m,
R ∈ Cm×m and R > 0, C ∈ Cl×n with m, l ≤ n, I is the identity
matrix of compatible size, G := BR−1BH ≥ 0 and H = CHC ≥ 0,
respectively
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The classification of solutions

Let the closed loop matrix TX := A− BFX for any Hermitian
solution X , the open unit disk by D, the closed unit disk by D̄, the
boundary of D by ∂D, the region outside the open unit disk by Dc .

1.With the shape of σ(TX ):

1. Unmixed solution
1 A subset Λ of C is Unmixed if 0 ∈ Λ and

Λ ∩ Λ̂ = ∂D,Λ ∪ Λ̂ = C,

where Λ̂ := {1/z̄ ; z ∈ Λ\{0}}.
2 X is an unmixed solution if there exists an unmixed set Λ such

that σ(TX ) ⊆ Λ.

2. Almost stabilizing solution: an unmixed solution with Λ = D̄.
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The classification of solutions

A > B (or A ≥ B ) if A− B > 0 (or A− B ≥ 0).

2.With the Loewner order of the Hermitian solution set:

Four extremal solutions:

1 X+,M : the maximal positive semidefinite solution.

2 X+,m: the minimal positive semidefinite solution.

3 X−,M : the maximal negative semidefinite solution.

4 X−,m: the minimal negative semidefinite solution.
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Motivation

Recent results

1 Newton method (P.Lancaster et al.): XNM= maximal
Hermitian solution.

2 Structure-preserving doubling algorithms (Lin W.W. et al.):
XSDA= (almost) stabilizing solution.

3 Maximal Hermitian solution= the (almost) stabilizing solution
under the stabilizability condition.

4 X+,M = X+,m under the stabilizability and detectability
condition.(Chiang2021)

5 XSDA = X+,m even ρ(TXSDA
) > 1.(Chiang2021)
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Motivation

Aims and Scope

1 Simple assumptions: (A,B) is stabilizable, G ≥ 0 and H ≥ 0.

2 Existence of four extremal solutions.

3 Based on the semigroup property, an accelerated fixed-point
iteration (AFPI) is developed for solving the four extremal
solutions of DARE.

4 AFPI works efficiently with R-superlinear convergence under
the mild assumptions.

5 Comprehensive convergence analysis of AFPI.
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Some basic and useful lemmas

Lemma:some fundamental identities

Let X , X̂ ∈ dom(R) := {X ∈ Hn | det(R + BHXB) 6= 0} and the
Stein operator SA(X ) := X − AHXA for all X ∈ Hn.

(i) If AF := A− BF for any F ∈ Cm×n and HF := H + FHRF ,
then

X −R(X ) = SAF
(X )− HF + KF (X ), (2.1a)

where KF (X ) := (F − FX )H(R + BHXB)(F − FX ).

(ii) If K (X̂ ,X ) := KF
X̂

(X ) and H
X̂

:= H + FH
X̂
RF

X̂
, then (2.1a)

can be rewritten as

X −R(X ) = ST
X̂

(X )− H
X̂

+ K (X̂ ,X ). (2.1b)
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Some basic and useful lemmas

Lemma: the spectral radius determining

Let B ∈ Cn×n and Q ≥ 0. If X0 is a positive semidefinite solution
of the Stein inequality SB(X ) ≥ Q, and Ker(Q) ⊆ Ker(B − A) for
some A ∈ Cn×n, then ρ(B) ≤ max{1, ρ(A)}. Furthermore, we have

(i) ρ(B) ≤ 1 if ρ(A) ≤ 1.

(ii) ρ(B) < 1 if ρ(A) < 1 or Ker(Q) ∩ Eλ(B) = {0} for some
λ ∈ σ(B).

Lemma:definite constraint

Let X ∈ R≥ := {X ∈ dom(R) |X ≥ R(X )}. Then

R + BHXB > 0 and K (X̂ ,X ) ≥ 0 for any X̂ ∈ Hn.
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The first kind of dual DARE

Assume that A is nonsingular. Let X (A) := A−HXA−1 for any
X ∈ Cn×n. It provides the formulation of the first kind of dual
DARE

Y = D1(Y ) := Ĥ + ÂHY (I + ĜY )−1Â,

where

Â = A−1 − B̂R̂−1BHH(A),

Ĝ = B̂R̂−1B̂H ≥ 0,

Ĥ = H(A) − BHH(A)R̂−1H(A)B,

where B̂ = A−1B and R̂ = R + BHH(A)B.
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The first kind of dual DARE

Proposition

1 Y = −X is a solution of D1(Y ) if and only if X is a solution
of R(X ). Furthermore,

(R(X )− X )(A) = (D1(Y )− Y )(I + GH(A)).

2 I − ĜX is nonsingular and

[(I + GX )−1A]× [(I + ĜY )−1Â] = I

σ((I + ĜY )−1Â) = σ(T−1X ).
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The second kind of dual DARE

Assume that A is nonsingular. Let nonsingular matrix
X ∈ R= := {X ∈ dom(R) |X = R(X )} . It can be shown that
Y := −X−1 satisfies

Y = D2(Y ) := AY (I + HY )−1AH + G .[
X (I + GX )−1A

]
×
[
Y (I + HY )−1AH

]
= −I .

Proposition

1

Y −D2(Y ) = A
[
(X − H)−1 − (R(X )− H)−1

]
AH ,

2

σ(((I + HY )−1AH)) = σ(XT−1X X−1) = σ(T−1X ).
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Extremal solutions of the DARE

In this section, the existence of extremal solutions to the DARE
(1.1) will be established iteratively through the Fixed-point
iteration(FPIs) given by

Xk+1 = R(Xk), Yk+1 = D1(Yk), Zk+1 = D2(Zk),

with suitable X0, Y0 and Z0.

FPI Xk for solving X+,m (Chiang2021)

Let ρD(M) := max{|λ| | λ ∈ σ(M) ∩ D} < 1.

1 Assumptions:R≥ ∩ Nn 6= ∅ and {Xk}∞k=0 with 0 ≤ X0 ≤ H.

2 Result: Xk → X+,m at least R-linearly. Furthermore,

lim sup
k→∞

k

√
‖Xk − X+,m‖ ≤ ρD(TX+,m)2< 1.
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Extremal solutions of the DARE

FPI Xk for solving X+,M

1 Assumptions: ρ(TX?) < 1 for some X? ∈ Hn and {Xk}∞k=0

with X0 = S−1TX?
(HX?) ∈ S≥.

2 Result:

a. S≥ := {X ∈ Hn | STX?
(X ) ≥ HX?

} ⊆ R≥ ∩ Nn.
b. Xk → X+,M at least R-linearly if ρ(T+,M) < 1. Furthermore,

lim sup
k→∞

k

√
‖Xk − X+,M‖ ≤ ρ(T+,M)2.

c. For each k ≥ 0, ρ(TXk
) < 1 and thus ρ(T+,M) ≤ 1.
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Extremal solutions of the DARE

Some equivalent conditions for the stabilizability of the pair (A,B)

The following statements are equivalent:

(i) The pair (A,B) is stabilizable.

(ii) Tere exists a matrix X? ∈ Hn satisfying ρ(TX?) < 1.

(iii) The DARE (1.1) has a unique almost stabilizing solution
X ∈ Hn.

(iv) The DARE (1.1) has a maximal and almost stabilizing
solution X ∈ Hn.
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Extremal solutions of the DARE

FPI Yk for solving X−,M ,X−,m

Assume that Ĥ ≥ 0, A is nonsingular, µ(M) := min{|λ| | λ ∈ σ(M)}.

1 Assumptions: D(1)
≥ ∩ Nn 6= ∅ and {Yk}∞k=0 with 0 ≤ Y0 ≤ Ĥ.

2 Result: Yk → −X−,M at least R-linearly. Furthermore,

lim sup
k→∞

k

√
‖Yk + X−,M‖ ≤ ρD(T−1X−,M

)2 < 1.

1 Assumptions: rank[A− λI B] = n for all λ ∈ D̄\{0} and {Yk}∞k=0

with Y0 = S−1
ÂF̂

(ĤF̂ ).

2 Result:Yk → −X−,m,

lim sup
k→∞

k

√
‖Yk + X−,m‖ ≤ ρ(T−1X−,m

)2 = µ(TX−,m)2 ≤ 1.
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Extremal solutions of the DARE

FPI Zk for solving X−,m

1 Assumptions: D
(2)
≥ ∩ Nn 6= ∅, (A,B) is controllable and

{Zk}∞k=0 with Z0 = 0.

2 Result: Zk → −X−,m at least R-linearly. Furthermore,

lim sup
k→∞

k
√
‖Zk − Z∞‖ ≤ ρD(T−1Z∞

)2 < 1.

Furthermore, the minimal negative semidefinite solution of
DARE (1.1) can be obtained by X−,m = −Z−1∞ .
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Acceleration of fixed-point iteration

Idea

1 In this section, for any positive integer r > 1, we will revisit an
accelerated FPI (AFPI) of the form

X̂k+1 = R(rk+1−rk )(X̂k), k ≥ 1,

X̂1 = R(r)(X̂0), k = 1

with X̂0 = X0.

2 Theoretically, the iteration of the above form is equivalent to
the formula

X̂k = R(rk )(X̂0) = Xrk , k ≥ 1,

with X̂0 = X0.
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Equivalent formulation of the fixed-point iteration

The following definition modifies the semigroup property of the
iteration associated a binary operator.

Definition:

Let Kn ⊆ Cp×q and F : Kn ×Kn → Kn be a binary matrix
operator, where p and q are positive integers. We call that an
iteration

Xk+1 = F (Xk ,X0), k ≥ 0,

has the semigroup property if the operator F satisfies the following
associative rule:

F (F (Y ,Z ),W ) = F (Y ,F (Z ,W ))

for any Y ,Z and W in Kn.
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The semigroup property of Xk+1 = F (Xk ,X0)

Example: A binary operator F with semigroup property

Let A be an arbitrary matrix with size n × n. For any three
n-square matrices X , Y and Z , we assume that A + X + Y and
A + Y + Z are nonsingular. Let ∆X ,Y = (A + X + Y )−1 and the
binary matrix function F be defined by F (X ,Y ) = X∆X ,YY .

Theorem :The discrete flow property

Given an iteration Xk+1 = F (Xk ,X0) with semigroup property, then

Xi+j+1 = F (Xi ,Xj)

for any nonnegative integers i and j .
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AFPI for solving DARE

1 The fixed-point iteration Xk can be rewritten as the following
formulation

Xk+1 = R(k)(R(X0)) = R(k+1)(X0) = Hk+AH
k X0(I+GkX0)−1Ak ,

where the sequence of matrices {(Ak ,Gk ,Hk)}∞k=0 is

generated by Xk+1 = F (Xk ,X0) with Xk :=
[
AH
k Gk Hk

]H
and X0 :=

[
A> G> H>

]>
for each k ≥ 0.

2 F : Kn ×Kn → F (Xk ,Kn is a binary operator defined by

F (U,V ) :=

 V1∆U2,V3U1

V2 + V‘∆U2,G3U2V
H
1

U3 + UH
1 V3∆U2,V3U1

 , (4.1)

with U,V ∈ Kn := Cn×n ×Hn ×Hn, ∆U2,V3 = (I +U2V3)−1.
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The accelerated fixed-point iteration

1 The operator F` : Kn → Kn is defined recursively by

F`+1(X) = F (X,F`(X)), ` ≥ 1,

with F1(X) = X for all X ∈ Kn

2

Xk+1 = Fr (Xk), k ≥ 0,

with X0 :=
[
AH G H

]H
, for constructing Ak = Ark−1,

Gk = Grk−1 and Hk = Hrk−1, respectively.
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The Accelerated Fixed-Point Iteration with r (AFPI(r))

1 Given a positive integer r > 1,let X̂0 = X0;

2 Outer iteration: For k = 1, . . . , iterate

Xk+1 = F (Xk ,X
(r−1)
k ) =

[
Ak+1 Gk+1 Hk+1

]>
,

X̂k+1 = AH
k+1X̂0(I + Gk+1X̂0)−1Ak+1 + Hk+1

until convergence, where X
(r−1)
k is defined in step 3.

3 Inner iteration: For ` = 1, . . . , r − 2, iterate

X
(`+1)
k = F (Xk ,X

(`)
k ),

with X
(1)
k = Xk .
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Convergence analysis of the AFPI

Convergence analysis of the AFPI

Applying AFPI to Xk for solving X+,m and X+M

Based on FPI: Xk and the same hypotheses:

(i) {Hk}∞k=0 converges at least R-superlinearly to X+,m with the
rate of convergence

lim sup
k→∞

rk
√
‖Hk − X+,m‖ ≤ ρD(TX+,m)2 < 1.

(ii) {X̂k}∞k=0 converges to X+,M with the rate of convergence

lim sup
k→∞

rk
√
‖X̂k − X+,M‖ ≤ ρ(TX+,M

)2,
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Convergence analysis of the AFPI

Convergence analysis of the AFPI

Applying AFPI to Yk for solving X−,m and X−M

Based on FPI: Yk and the same hypotheses, applying AFPI to first
kind of DARE:

(i) {Hk}∞k=0 converges at least R-superlinearly to −X−,M with
the rate of convergence

lim sup
k→∞

rk
√
‖Hk + X−,M‖ ≤ ρD(T−1X−,M

)2 < 1.

(ii) {X̂k}∞k=0 converges at least R-superlinearly to −X−,m with the
rate of convergence

lim sup
k→∞

rk
√
‖X̂k + X−,m‖ ≤ ρ(T−1X−,m

)2 = µ(TX−,m)−2.
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Convergence analysis of the AFPI

Convergence analysis of the AFPI

Applying AFPI to Zk for solving X−,m

Based on FPI: Zk and the same hypotheses:

We have Gk = Zrk−1. Furthermore, {Gk}∞k=0 converges at
least R-superlinearly to the unique almost stabilizing solution
G∞ = −X−,m > 0 of the second kind of dual DARE with the
rate of convergence

lim sup
k→∞

rk
√
‖Gk + X−,m‖ ≤ ρD(T−1G∞

)2 < 1.
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Numerical examples

Numerical examples

Environment setting

In this section, we present four examples to illustrate the accuracy
and efficiency of the AFPI(r) for solving the extremal solutions of
the DARE.

1 In the first three examples we compared the AFPI algorithm,
through the sequence {X̂k}∞k=0 starting with some suitable

initial X̂0, with Newton’s method (NTM) for solving the
maximal or (almost) stabilizing solution X+,M ≥ 0 of DARE
(1.1b).

2 X̂0 ≥ 0 is the unique solution of Stein matrix equation
SAF

(X ) = H + FHRF , which can be computed by MATLAB
command dlyap directly.

3 R = I in all numerical examples.
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Numerical examples

Numerical examples

Environment setting

1 For an approximate solution Z to the DARE (1.1), we will
report its normalized residual

NRes(Z ) :=
‖Z −R(Z )‖

‖Z‖+ ‖AHZ (I + GZ )−1A‖+ ‖H‖
,

2

TZ := (I + GZ )−1A, µ(TZ ) := min{|λ| | λ ∈ σ(TZ )}.

3 We terminated the numerical methods AFPI and NTM when
NRes ≤ 1.0× 10−15 in Example1–3, and the AFPI algorithm
terminated when NRes ≤ 1.0× 10−12 in Example 4,
respectively.
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Numerical examples

EX1

1 Let the coefficient matrices of DARE (1.1b) be given by

A =

[
3 0
0 1/2

]
, B =

[
1
0

]
, H =

[
0 0
0 1

]
.

Then it is easily seen that the pair (A,B) is stabilizable, but (A,C )
is not detectable.

2 Only two positive semidefinite solutions, namely,

X+,M =

[
8 0
0 4/3

]
, X+,m =

[
0 0
0 4/3

]
.

3 The matrix X+,M is the maximal and stabilizing solution of the
DARE such that the eigenvalues of TX+,M

= (I + GX+,M)−1A are
1/3 and 1/2, and σ(TX+,m) = σ(A), respectively. Thus, X+,m is the
minimal positive semidefinite solution of the DARE (1.1b) with the
property ρ(TX+,m) = 3 > 1.
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Numerical examples

EX1

1

k NRes(X̂k) NRes(Hk) ρ(TX̂k
) ρ(THk

) ‖Ak‖
1 5.7× 10−4 2.4× 10−2 5.0× 10−1 3.0× 100 9.0× 100

2 7.1× 10−6 1.5× 10−3 5.0× 10−1 3.0× 100 8.1× 101

3 1.1× 10−9 5.7× 10−6 5.0× 10−1 3.0× 100 6.6× 103

4 1.0× 10−16 8.7× 10−11 5.0× 10−1 3.0× 100 4.3× 107

5 0.0× 100 3.0× 100 1.9× 1015

Table: Numerical results of AFPI(2) for EX1.

2

k NRes(Xk) ρ(TXk
)

1 5.7× 10−4 5.0× 10−1

2 8.7× 10−8 5.0× 10−1

3 2.1× 10−15 5.0× 10−1

4 0.0× 100 5.0× 10−1

Table: Numerical results of NTM for EX1.
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Numerical examples

Ex2

In this example we consider the DARE (1.1b) with its 5× 5 coefficient
matrices being defined by

A =

[
2.9 1
0 2.9

]
⊕ 02 ⊕ 1, H = 02 ⊕

[
200 −0.5
−0.5 200

]
⊕ 1

and B = diag(
√

2, 1, 0, 0, 1), respectively.

1 It can be shown that the explicit solution X+,m of the DARE (1.1b)
is

X+,m = 02 ⊕
[

200 −0.5
−0.5 200

]
⊕ (1 +

√
5)/2,

which is almost the same as H except the (5, 5)-entry.

2 (A,B) is stabilizable and thus X+,M exists.

Chun-Yueh Chiang(CGE, NFU) The extremal solutions of DARE 37 / 48



Introduction Preliminaries FPIs for solving Extremal solutions Acceleration of fixed-point iteration(AFPI) Concluding Remark

Numerical examples

Ex2

1

k NRes(X̂k) NRes(Hk) ρ(TX̂k
) ρ(THk

) ‖Ak‖
1 9.0× 10−5 2.5× 10−4 3.8× 10−1 2.9× 100 1.2× 101

2 1.7× 10−6 5.6× 10−6 3.8× 10−1 2.9× 100 1.3× 102

3 7.1× 10−10 2.6× 10−9 3.8× 10−1 2.9× 100 1.5× 104

4 7.2× 10−17 5.2× 10−16 3.8× 10−1 2.9× 100 1.4× 108

Table: Numerical results of AFPI(2) for EX2.

2

k NRes(Xk) ρ(TXk
)

1 3.4× 10−4 3.8× 10−1

2 1.3× 10−6 3.8× 10−1

3 2.6× 10−11 3.8× 10−1

4 2.3× 10−18 3.8× 10−1

Table: Numerical results of NTM for EX2.
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Numerical examples

EX3

This example is modified from Example 6.2 of [GuoSIMAX98]. For
ε ≥ 0, the coefficient matrices of DARE (1.1b) are defined by

A = diag

−1 0 0
0 1 ε
0 0 1

 ,[√32 1
2

−1
2

√
3
2

]
,

1
2 1 0
0 1

2 1
0 0 1

2

 ,

B =



1 0 0 0 0 0 0 0
1 1 ε 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1


, H = CHC = 0 ∈ R8×8.
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Numerical examples

Ex3

1 This DARE has a unique positive semidefinite solution
X+,M = X+,m = 0, where X+,M is the almost stabilizing
solution with σ(TX+,M

) = σ(A) for all ε ≥ 0.

2 Note that this DARE is just the same as the one appeared in
Example 6.2 of [GUOSIMAX98] when ε = 0, in which all
unimodular eigenvalues of A are semisimple.

3

Method Iter. No. CPU Time (sec.)

AFPI(2) 50 8.78× 10−3

AFPI(4) 25 1.45× 10−2

AFPI(8) 17 1.35× 10−2

AFPI(100) 8 1.51× 10−2

NTM 50 3.08× 10−2

Table: The CPU times of numerical methods for EX3 with ε = 0.
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Numerical examples

EX3
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Figure: Convergence histories of numerical methods for EX3 with ε = 0.
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Numerical examples

EX3

k ‖X̂k − X+,M‖
‖X̂k−X+,M‖
‖X̂k−1−X+,M‖

ρ(T
X̂k

) ‖Ak‖

1 2.0× 10−2 1.06× 10−3 9.90× 10−1 1.0× 102

2 2.0× 10−4 1.02× 10−2 1.0× 100 1.0× 104

3 2.0× 10−6 1.00× 10−2 1.0× 100 1.0× 106

4 2.0× 10−8 1.00× 10−2 1.0× 100 1.0× 108

5 2.0× 10−10 1.00× 10−2 1.0× 100 1.0× 1010

6 2.0× 10−12 1.00× 10−2 1.0× 100 1.0× 1012

7 2.0× 10−14 1.00× 10−2 1.0× 100 1.0× 1014

Table: Numerical results of AFPI(100) for EX3 with ε = 1.
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Numerical examples

EX4

1 This example will demonstrate the feasibility of our AFPI
algorithm for solving the negative semidefinite extremal
solutions. As quoted from Example 6.2 of [IJC2017],

A =

[
4 3
−9
2

−7
2

]
, B =

[
6
−5

]
, H =

[
9 6
6 4

]
.

2

Â =

[
7 6
−9 −8

]
, B̂ =

[
12
−14

]
, Ĉ =

[
24 16

]
, R̂ = 65, Ĥ = H.
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Numerical examples

EX4

1 This DARE has three extremal solutions, namely,

X+,M = X+,m =

[
9
2 + 9

8

√
17 3 + 3

4

√
17

3 + 3
4

√
17 2 +

√
17
2

]

and

X−,M =

[
9
2 −

9
8

√
17 3− 3

4

√
17

3− 3
4

√
17 2−

√
17
2

]
, X−,m =

[
−103
12 −

√
17
8

−39
4 −

√
17
4

−39
4 −

√
17
4

−43
4 −

√
17
2

]
.

2 X+,M ≥ 0 is the maximal and stabilizing solution, X−,M is the
maximal negative semidefinite solution and X−,m ≤ 0 is the
minimal solution, respectively.
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Numerical examples

EX4

k NRes(−Hk) NRes(−X̂k) µ(T−Hk
) µ(T−X̂k

) ‖Ak‖
1 2.1× 10−13 9.5× 10−1 5.0× 10−1 2.0× 100 5.7× 101

2 2.1× 10−13 5.1× 10−8 5.0× 10−1 2.0× 100 2.3× 105

3 2.1× 10−13 7.4× 10−13 5.0× 10−1 2.0× 100 1.3× 10−1

Table: Numerical results of AFPI(4) for EX4.
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Concluding Remark

1 In most of the past works, it is always assumed that the
DARE has a unique maximal or (almost) stabilizing solution
X with ρ(TX ) ≤ 1 and another meaningful solutions are
lacking in brief discussion. Our contribution fills in the
existing gap in finding four extremal solutions of the DARE.

2 Theoretically, we provides an accelerated technique,
embedded with a discrete-type flow property, to solve the four
extremal solutions. This property then allows us to advance
the original fixed-point iterative method.

3 Generally speaking, the convergence speed of accelerated
iteration has R-order r , and even more, for the singular case,
the iteration still succeeds with a linear rate of convergence.

4 How to apply the accelerated techniques in the work for
solving unmixed solution leads to the work in future.
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Thank you for your attention!
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